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Interfacial Stress, Interfacial Energy, and Phase
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A simple model is presented in order to explore the influence of interfacial stress,
interfacial energy, and surface stress on the characteristics of phase equilibria in
stressed, two-phase binary alloys. Two different system geometries are employed:
concentric spheres and thin plates. The conditions for thermodynamic equilibrium
are solved and equations of state for each geometry are obtained in terms of the
phase fraction, alloy composition, system dimension, and several dimensionless
materials parameters. Elastic stress introduces new equilibrium states that are
further modified by the interfacial quantities. Those conditions for which interfa-
cial quantities can induce significant changes in the equilibrium phase fraction
and phase compositions are identified.

KEY WORDS: Phase equilibrium; interfacial stress; surface stress; elastic
stress.

1. INTRODUCTION

John Cahn has had a strong influence on our research, particularly in the
areas of the thermodynamics of crystalline solids and the role of elastic
stress in solid-state phase transformations. Two areas to which John has
introduced us and which we have found particularly intriguing, are the
effect of coherency stress on phase equilibria in crystalline solids(1�3) and the
influence of capillarity on the thermodynamics of crystals.(4, 5) His paper with
F. Larche� in 1984 on A Simple Model for Coherent Equilibrium, (2) in par-
ticular, raised tantalizing questions about the rules governing phase equi-
libria in stressed, coherent systems. In this work, based on a simple model for
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the elastic and chemical energy of a two-phase system, Cahn and Larche�
argued that a number of general theorems of thermodynamics derived for
fluid systems were not applicable to multiphase crystals with coherent
interfaces. For example, tie lines drawn in a temperature-composition
phase diagram did not necessarily end on phase boundaries and were a
function of the alloy (bulk) composition. In addition, the applicability of
Gibbs' phase rule to coherent systems was called into question. These
results, along with John's encouragement, motivated our own investigation
of phase equilibria in coherent systems(6�13) and sparked the research of
several other investigators.(14�20)

In the early 1980's, Cahn also elucidated some simple models exploring
the effect of interfacial energy, surface stress, and interfacial stress on
the phase equilibria of small particles embedded in fluid or crystalline
matrices.(4, 5) Owing to the difference between interfacial stress and interfa-
cial energy in crystalline solids, some of the well-accepted, fundamental
consequences of capillarity were shown to be modified when one of the
phases was a crystal. For example, when substitutional atoms are added to
the system, work is done against the interfacial energy, while work is done
against the interfacial stress when the interface is deformed. We used these
results to explore interfacial equilibrium during a simple diffusional phase
transformation in a stressed crystal.(21)

With the current prevalence of nanostructured materials and thin-film
devices, the influence of interfacial stress and interfacial energy on phase
equilibria and phase stability in multicomponent systems becomes of prac-
tical concern. For crystals with dimensions on the order ten to hundreds of
nanometers, interfacial stresses can generate bulk stresses in single-phase
materials that would be expected to shift significantly compositions and
chemical potentials from the values they would have in large systems. At
such dimensions, the interfacial energy can become a non-negligible frac-
tion of the system energy. The coupling of elastic stress and interfacial
effects results in many cases in which a matrix or substrate stabilizes a
phase not found on the phase diagram.(22) The effect of interfacial stress on
the relative stability of phases in a two-phase systems remains largely
unexplored.

In this paper, we explore the effect of interfacial stress, surface stress,
and interfacial energy on the equilibrium phase compositions, phase frac-
tion, and phase stability of a two-phase, coherent binary alloy system.
We use the bulk and interfacial conditions for thermodynamic equilibrium
to obtain a set of equations for the phase compositions and phase fraction.
This guarantees that the appropriate free energy of the system is an
extremum and, thereby, identifies both energy maxima (unstable states)
and energy minima (stable or metastable states). The shift in equilibrium
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phase compositions from those of the unstressed equilibrium state are
linearized to obtain an equation of state for the stressed system in terms of
the phase fraction, alloy composition, system dimension, and various
materials parameters. The elastic fields experienced by each phase are
affected by the system geometry and the interfacial conditions for ther-
modynamic equilibrium depend on the local curvature of the interface.
These conditions suggest that, unlike fluid systems, the system geometry
and spatial distribution of the phases will strongly affect equilibrium. Con-
sequently, we limit our analysis to two, experimentally observed geometries
that are relevant to nanoscale materials and which guarantee that all bulk
and interfacial equilibrium conditions can be satisfied simultaneously. The
system geometries employed are two concentric spheres with isotropic
properties and a thin-film system of parallel layers or plates with cubic
symmetry. The equations of state for the two system geometries including
capillarity effects are presented in the next two sections. These results are
then compared with bulk equilibrium phenomena in the following section.

2. EQUILIBRIUM CONDITIONS

2.1. Mechanical Equilibrium

We consider phase equilibria in a two-phase (:&;) crystalline solid.
Each phase is assumed to be a binary substitutional alloy of components
A and B. The phases can differ in their thermodynamic properties including
composition, elastic constants, and molar volumes. Crystal lattice param-
eters and elastic constants are assumed independent of composition. All
interfacial and surface quantities are assumed isotropic and independent of
composition and deformation.

The coherency constraint requires that a continuity of the lattice
planes be maintained at all times across the :&; interface. This implies
that there is a lattice common to both phases to which the deformation of
each phase can be referred. Our treatment of coherent phase equilibria con-
sists of isothermally arranging a given number of A and B atoms (deter-
mined by the mole fraction of the bulk alloy) on this common lattice in one
of the two predetermined geometries. The atoms are limited to either the :-
or ;-phases. Other geometries or spatial arrangements of the phases could
exist which satisfy the thermodynamic equilibrium conditions, such as
concentric cylinders, but these two simple models serve to illustrate the
influence that interfacial properties might have on the characteristics of
phase equilibria in nanoscale systems.

For the thin-film and concentric sphere geometries, the reference state
for measuring strain, E, is taken to be the unstressed :-phase. If the stress-
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free ;-phase has a different lattice parameter than that of the stress-free
:-phase, the ; phase will be stressed when deformed into the reference
state. Let ET be the strain required to transform the stress-free ;-phase into
the reference state as measured with respect to the reference state (the mis-
fit strain). The stress state of each phase, T, is then given by:

T:=C: } E and T;=C; } (E&ET) (1)

where C is the elastic constants tensor for the indicated phase. As we will
consider isotropic and cubic crystals, the misfit strain is isotropic and
dilatational, and can be expressed in terms of the misfit strain, =, as
ET==1, where 1 is the unit tensor. Mechanical equilibrium in each phase
requires:

{ } T:=0 and { } T;=0 (2)

The coherency constraint requires the continuity of displacement, u, at
the :&; interface:

u:=u; (3)

Mechanical force balance at the coherent :&; interface requires:

T: } n̂:+T; } n̂;+ f� I};n̂;=0 (4)

where n̂ is the outward pointing unit normal to the indicated phase,
f� I= f� I1 is the isotropic interfacial stress acting at the :&; interface, and
}; is the mean curvature measured with respect to the ;-phase. Mechanical
equilibrium at a free surface of :-crystal is given by a similar force balance:

T: } n̂:=&(Pext+ f� s}:) n̂: (5)

where Pext is the external pressure acting on the crystal and f� s is the
isotropic surface stress (f� s= f� s1). Our assumption of the composition inde-
pendence of the elastic constants, misfit strain and lattice parameter of each
phase allows the mechanical field equations to be decoupled from the other
equilibrium conditions. The elastic fields associated with each system
geometry are calculated in Appendices I and II in terms of the phase frac-
tion of each phase.

2.2. Thermodynamic Equilibrium

In order to completely specify the thermodynamic state of this isother-
mal two-phase system, one must determine the compositions of each phase
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and the phase fraction. These three unknowns are determined through a
solution to the two nonlinear equations governing thermodynamic equi-
librium and one equation for mass conservation, once the elastic field has
been determined.

The first of the three equations necessary to ensure equilibrium (an
energy extremum) is given by the requirement that the diffusion potential,
MBA , be uniform within each phase and, in particular, continuous at the
:&; interface. As the elastic constants and molar volumes are assumed
independent of composition, the diffusion potential depends on the local
composition only and not on the stress state. Under these conditions, the
diffusion potential can be expressed simply as:(23)

MBA=+B(C )&+A(C) (6)

where +B is the usual (stress-free) chemical potential of component B, and
C is the mole fraction (composition) of component B. Chemical equi-
librium between phases requires:(23)

M:
BA(C:)=M ;

BA(C;) (7)

or, using Eq. (6),

+:
B(C:)&+:

A(C:)=+;
B(C ;)&+;

A(C;) (8)

The second equation is given by a condition involving the jump in the
free energy densities, 5v , evaluated at the planar :&; interface:(24, 25)

5 ;
v &5 :

v=&};_+[(F� T } f� I) } %0 7] } n̂ (9)

where _ is the deformation-dependent (isotropic) interfacial free energy
density, F� T is the transpose of the interfacial deformation gradient, %0 7 is
the surface divergence operator, and the free energy density 5v is defined
by:

5v=ev&%'v&MBA\B&(TR } n̂) } (F } n̂) (10)

where ev is the internal energy density, % is the absolute temperature, 'v is
the entropy density, TR is the first Piola�Kirchoff stress tensor, and F is the
deformation gradient tensor. Invoking linear elasticity and under the
assumptions given previously, Eq. (9) becomes:(24)

\o[+;
A(C;)&+:

A(C:)]+};_+Eel=0 (11)

where

Eel=
1
2 T; : (E;&ET)& 1

2T: : E:+T; : (E:&E;)+};f� I n̂ } (E:&E;) } n̂

(12)
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The notation T : E=Tij Eij represents the scalar product of the stress and
strain tensors and summation over repeated indices extends from 1 to 3.

Finally, the third equation is obtained from mass conservation which
can be expressed as:

(1&z) C:+zC;=Co (13)

where Co is the overall (bulk) alloy composition and z is the phase fraction
of ;.

The set of Eqs. (8), (11), and (13) are nonlinear and, in general, must
be solved numerically. However, if the departures of the equilibrium phase
compositions in the stressed state from those of the stress-free state are
small, then the chemical potentials can be written to first order in terms of
the shift of composition from the stress-free equilibrium compositions, C :

o

and C ;
o . As shown in Appendix III, the condition on chemical equilibrium,

Eq. (8), is approximated as:

f :
cc 2C:= f ;

cc 2C ; (14)

where 2C :=C :&C :
o , 2C;=C;&C ;

o and fcc is the second derivative with
respect to composition of the Helmholtz free energy per atom for the
designated phase evaluated at the stress-free equilibrium compositions
Likewise, Eq. (11) can be approximated as:

\oC :
o f :

cc 2C :&\oC ;
o f ;

cc 2C;+};_+Eel=0 (15)

where \o is the number of atoms per unit volume. Solving Eqs. (13)�(15)
for 2C:, 2C; and z gives:

2C:=
};_+Eel

\o(C ;
o&C :

o) f :
cc

(16)

2C;=
};_+Eel

\o(C ;
o&C :

o) f ;
cc

(17)

and

f ;
cc[(Co&C :

o)&(C ;
o&C :

o) z]
[ f ;

cc+( f :
cc& f ;

cc) z]
=

};_+Eel

\o(C ;
o&C :

o) f :
cc

(18)

In order to determine the phase compositions and phase fraction, it is
necessary to calculate the stresses and strains at the interface. Since the
composition is not coupled directly to the stresses and strains, due to the
assumed independence of the lattice parameters and elastic constants on
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composition, we can use these three equations to determine the equilibrium
compositions and phase fraction for both the thin film and concentric
sphere arrangement of the phases.

Finally, we find it convenient to introduce scaled compositions for the
:-phase (1:), ;-phase (1;), and alloy (1o) as:

1:=&1+2(C:&C :
o)�(C ;

o&C :
o) (19)

1;=1+2(C;&C ;
o)�(C ;

o&C :
o) (20)

and

1o=&1+2(Co&C :
o)�(C ;

o&C :
o) (21)

In the absence of elastic or curvature effects, the scaled phase compositions
at equilibrium are independent of the alloy composition, 1o , and are given
by 1:=&1 and 1;=1. The two-phase field exists for &1<1o<1. We
express the difference in the curvature of the free energy densities in terms
of the nondimensional parameter ` as:

`=( f :
cc& f ;

cc)� f ;
cc (22)

Substituting Eqs. (21) and (22) into Eq. (18), gives:

(1o+1&2z)
(1+`z)

=
2(};_+Eel)

\o(C ;
o&C :

o)2 f :
cc

(23)

For the geometries we are examining, Eel can be expressed in terms of the
phase fraction z and an overall system dimension. This will allow Eq. (23)
to be used as an equation of state for calculating the equilibrium phase
fraction z as a function of the imposed conditions, system size, and
materials parameters. Likewise, the scaled phase compositions 1: and 1;

can be expressed in terms of the equilibrium phase fraction by combining
the mass conservation condition, Eq. (13), and the approximation, Eq. (15),
with Eqs. (19) and (20) to yield:

1:=&1+
(1o+1&2z)

(1+`z)
(24)

and

1;=1+
(`+1)(1o+1&2z)

(1+`z)
(25)
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In the following sections we obtain the equation of state for each of the
system geometries. We note that, in the absence of elastic effects and inter-
facial curvature, Eq. (23) reduces to a single solution for the phase fraction:

z=(1o+1)�2 (26)

The corresponding scaled equilibrium phase compositions, 1:=&1 and
1;=1, are constant and independent of the alloy composition when
Eq. (26) is realized.

3. THIN-FILM GEOMETRY

In this section, we derive equations for the equilibrium phase composi-
tions and phase fraction and an equation of state for the :&; system when
the phases are arrayed as thin parallel plates, as depicted in Fig. 1. Two
cases are considered. In the first, the misfit strain is assumed to vanish. This
allows the effect of the interfacial stress on phase equilibrium to be assessed
directly. In the second case, the misfit strain is included.

The crystallographic axes of each cubic phase are assumed to be
aligned with the coordinate axes and the :&; interfaces are taken parallel
to the x1&x2 plane. The thickness of the phases are l: and l; , respectively,
with a repeat distance of l:+l;=L. The isotropic interfacial stress, which
exerts a mechanical force per unit length of interface, is given by f� I . The
external stress Tap is applied along the edge of the plates equally in the x1

and x2-directions, while no external stresses are applied in the x3 -direction.

Fig. 1. For the thin-film geometry, the crystallographic axes of the cubic phases are aligned
with the coordinate axes. The interfacial stress, f� I , exerts a force per unit length of :&; inter-
face in the x1 and x2 directions along the edge of the film. This interfacial stress is balanced
by the uniform stress in each phase and the applied stress, Tap , and is the only means by
which the interfacial stress affects phase equilibria in this geometry.
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The assumptions used in this model allow the elastic field of the
phases to be determined as a function of the phase fraction of ; phase,
z=l; �L, the repeat distance L, the interfacial stress, and the elastic con-
stants of the phases. If bending of the plates is prohibited, as would be
expected for an array of plates, the interfacial curvature is zero and the };_
and };f� I terms vanish on the :&; interface. The stresses, strains and strain
energy density for both phases are calculated in Appendix I. Additionally,
the elastic state and, hence, thermodynamic state within each phase is
uniform.

3.1. No Misfit Strain

When the misfit strain vanishes, ==0, the elastic field is engendered by
the applied stress, Tap , and interfacial stress, f� I . Setting ==0 in Eqs. (79)
and (80) of Appendix I yields:

Eel=
$p[Tap&2f� I �L]2

Y:(1+$pz)2 (27)

where Y is the planar elastic modulus given by Eq. (77), and $p is a
measure of the difference in the planar elastic moduli between phases:

$p=(Y;&Y:)�Y: (28)

Substituting Eq. (27) into Eq. (23), we obtain the equation of state for the
planar system without misfit strain:

(1o+1&2z)=
$p4m(1+`z)

(1+$pz)2 (29)

where we define the dimensionless stress parameter, 4m , as:

4m=
2[Tap&2f� I �L]2

Y:\o f :
cc(C

;
o&C :

o)2 (30)

Values of z which satisfy Eq. (29) with 0�z�1 give phase fractions which
satisfy all thermodynamic equilibrium conditions. The phase compositions
corresponding to the phase fraction are obtained from Eqs. (24) and (25).
Nonzero values of 4m change the equation of state from a linear polyno-
mial to a cubic polynomial in z. This condition allows for multiple equi-
librium states for a given alloy composition and applied stress.

1289Interfacial Stress and Phase Equilibria in Binary Alloys



Case: ==0 and |4m |<<1. In many cases, but not all, we expect
|4m |<<1.3 If so, we can examine the effect of the interfacial stress on the
equilibrium phase fraction and compositions in the case of no misfit strain
by writing:

z=zo+zm4m+O(42
m) (31)

Substituting Eq. (31) into Eq. (29) and collecting terms of like order in 4m

gives zo=(1o+1)�2 and:

zr(1o+1)�2&
$p[2+`(1o+1)]
[2+$p(1o+1)]2 4m (==0) (32)

The corresponding equilibrium phase compositions are obtained by sub-
stituting Eq. (32) into Eqs. (24) and (25):

1:r &1+
4$p 4m

[2+$p(1o+1)]2 (==0) (33)

and

1;r1+
4(1+`) $p4m

[2+$p(1o+1)]2 (==0) (34)

3.2. Misfit Strain

When the misfit strain is nonzeros the elastic term, Eel , becomes:

Eel=
Y:=2

(1+$pz)2 [&$p(1+$p) z2&2(1+$p) z+(1+$p)(1&2{o
11)+$p({o

11)2]

(35)

where we define:

{o
11=T o

11�=Y:=[Tap&2f� I�L]�=Y: (36)

{o
11 is the nondimensional measure of the effective stress (T o

11) acting along
the edge of the thin film. It depends on the thickness of the system L as
well as the applied stress Tap . Substituting Eq. (35) into Eq. (23) and defin-
ing the scaled elastic parameter, 4p , as:

4p=
2=2Y:

\o f :
cc(C ;

o&C :
o)2 (37)

1290 Johnson and Voorhees

3 For example, near a congruent point, we expect |4m | to be large.



yields the following cubic polynomial equation for the equilibrium phase
fraction z:

(1o+1&2z)
(1+`z)

=
4p

(1+$pz)2 [&$p(1+$p) z2

&2(1+$p) z+(1+$p)(1&2{o
11)+$p({o

11)2] (38)

We refer to Eq. (38) as the equation of state for the misfitting thin-film
system. Phase fractions (values of z) which satisfy Eq. (29) and the constraint
0�z�1 satisfy all thermodynamic equilibrium conditions. However, the
system could be either stable or unstable with respect to small changes in
the phase fraction. The corresponding phase compositions are obtained
from Eqs. (24) and (25).

Case: {o
11=0 and |4p |<<1. The effect of the misfit strain on the

equilibrium phase fraction and phase compositions, as compared to the
stress-free case, can be estimated when the scaled elastic parameter is small,
4p<<1. Setting {o

11=0 for consistency, we assume z=zo+zp4p+O(42
p)

and substitute this expression into Eq. (38). Keeping terms to first order in
4p gives:

zr
(1o+1)

2
+zp 4p ({o

11=0) (39)

where:

zp=
[2+`(1o+1)]

4[2+$p(1o+1)]2 [$p(1+$p)(1o+1)2+4(1+$p) 1o] ({o
11=0)

(40)

The scaled phase compositions are approximated by:

1:r &1&
4zp 4p

[2+`(1o+1)]
({o

11=0) (41)

and

1;r1&
4zp(1+`) 4p

[2+`(1o+1)]
({o

11=0) (42)

Equations (39)�(42) express the phase fraction and compositions for the
stressed state as a perturbation about the equilibrium state of the
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unstressed system. It does not account for possible additional solutions that
are introduced owing to the elasticity.(6)

Case: |{o
11 |<<1 and $p=0. We can also approximate the effect of

the interfacial stress f� I and system dimension L on the equilibrium phase
fraction and compositions using a perturbation analysis similar to that just
given. In order to avoid unnecessary complexity, these effects are best illus-
trated by assuming elastic homogeneity; i.e., by setting $p=0. If |{o

11 |<<1,
then we approximate:

z=zo+zt{o
11+O(({o

11)2) (43)

Substituting Eq. (43) into Eq. (38) and grouping terms of like order in {o
11 ,

we find zo is a solution of the quadratic equation:

2`4pz2
o+[(2&`) 4p&2] zo+1o+1&4p=0 ($p=0) (44)

and that zt depends on the value of zo according to:

zt=
24p(1+`zo)

[2&4p&24p(1+`) zo]
($p=0) (45)

The equilibrium phase compositions are then determined from Eqs. (24)
and (25). The possible existence of two solutions for Eq. (44) indicates that,
for $p=0, there exists two possible equilibrium states. Only one of these
states will be stable with respect to variations in the phase fraction.(6)

Case: $p=0 and `=0. For the case of elastic homogeneity
($p=0) and when the curvatures of the free energy densities are the same
(`=0), the equation of state is linear and only one equilibrium state is
possible. The equilibrium phase fraction is given by:

z=
1o+1&4p+24p {o

11

2(1&4p)
($p=`=0) (46)

The corresponding scaled phase compositions are:

1:=&1&
4p(1o+2{o

11)
(1&4p)

($p=`=0) (47)

and

1;=1&
4p(1o+2{o

11)
(1&4p)

($p=`=0) (48)
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4. SPHERICAL PARTICLES

4.1. Governing Equations

A schematic diagram of the spherical system is shown in Fig. 2. The
;-phase has a radius of R; and is centered at the origin. The :-phase has
an outer radius of R: and the phase fraction of ; is expressed as z=
(R;�R:)3. The elastic fields can be expressed as a function of z and the
outer radius R:. The position-dependent elastic fields for the phases are
determined in Appendix II. The elastic energy densities evaluated at the
interface yield to first order in f� I :

Eel=
&9=2K;[$sz2+2z&1]+91P[2=K ;+1*K:$sP]

21*(1+$sz)2

+
61f� Iz

1*R;(1+$sz)2 _P$s+
K;=

K: 1*& (49)

Fig. 2. All materials properties are assumed to be isotropic for the concentric sphere
geometry and the inner phase is taken as ; with radius R;. The interfacial stress f� I exerts a
radial force at r=R; and the surface stress f� s and external pressure Pext exert a radial force
at r=R:.
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where K and + are the bulk and shear moduli, respectively, of the indicated
phase, and:

P=(Pext+2f� s �R:)�3K: (50)

$s=(K ;&K:)�K:1* (51)

1=(3K:+4+:)�4+: (52)

and

1*=(3K;+4+:)�4+: (53)

If Eq. (49) is substituted into Eq. (23) an equation of state for the spheri-
cally symmetric system can be obtained. This is a complicated expression
in z and R: that needs to be solved numerically and requires an expression
for the elastic component of the interfacial energy density _. The presence
of an interfacial stress leads to the last term Eq. (49), the remaining terms
are identical to those found previously when R: � �. (6) Note that the
interfacial stress term that arises from the bulk elastic fields evaluated at
the interface is proportional to z�R;.

Since the interfacial stress f� I is assumed constant, the interfacial energy
is given by:

_=_o+ f� I (E :
%%+E :

,,) (54)

where _o is the interfacial energy density in the absence of interfacial defor-
mation. The strain components E :

%%=E :
,, are given in Appendix II. If we

neglect the dependence of _ on interfacial curvature, Eq. (54) simplifies to:

_=_o+
6=f� IK;(3K:+4+:z)

[3K:(3K;+4+:)+12+:(K ;&K :) z]
(55)

The dependence of the interfacial energy on the phase fraction arises
because the elastic fields depend on the phase fraction.

The thermodynamics used to obtain the equation of state is a condi-
tion for an energy extremum. Thus, the equation of state should yield an
expression for the critical radius of nucleation R*; (an energy maximum).
Setting z=0 and P=0 in Eqs. (49) and (55), and using Eq. (23) yields:

R*;=
2_o+12K ;f=T�(3K;+4+:)

2Fc&18=2+:K;�(3K;+4+:)
(56)

1294 Johnson and Voorhees



where 2Fc is the change in Helmholtz free energy per unit volume in the
limit of small supersaturation:

2Fc=\o(Co&C :
o)(C ;

o&C :
o) f :

cc (57)

This agrees with the expression for the critical radius for nucleation found
previously by Cahn and Larche.(5) The expression for 2Fc is obtained only
in the small supersaturation limit due to the linearization of the chemical
potentials shown in Appendix III. The interfacial stress terms shown in
Eq. (56) are due solely to the dependence of the interfacial energy on inter-
facial stress, since the surface stress terms appearing in Eel disappear in the
limit z=0.

The equation of state is quite complicated in the most general case
and, consequently, it is necessary to resort to a numerical method to deter-
mine the effects of interfacial and surface stress on phase equilibrium.
However, in the limit $s=0, the terms involving f� I in both Eq. (49) and
Eq. (55) are linear in z. Thus, in the limit that the elastic constants of the
particle and matrix are identical, the interfacial stress does not alter the
order of the equation of state. Both the terms involving the misfit and inter-
facial stress yield quantities that are linear in z. Thus the presence of an
interfacial stress does not alter qualitatively the results found previously
in the absence of a surface stress, but will certainly change the results
quantitatively.

4.2. Equations of State

Case: $s=0 and Pext=0. A tractable equation of state that
indicates the effect of capillarity and stress on phase equilibria in the
spherical particles can be obtained by assuming the elastic constants of the
two phases to be equal, $s=0, and that there is no external pressure acting
on the system, Pext=0.

As for the thin-film case, we define a nondimensional stress parameter
4s as:

4s=
9K :=2

1\o(C ;
o&C :

o)2 f :
cc

(58)

In addition, a quantity related to size of the system can be given in terms
of the reciprocal of R: as:

{=
3=f� s

\o(C ;
o&C :

o)2 f :
ccR: (59)
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F is defined as the ratio of the interfacial and surface stresses:

F=
5f� I

3#f� s
(60)

and 7 is a nondimensional interfacial term:

7=
_o

3=f� s
&

K :f� I
(3K:+4+:) f� s

(61)

Substituting the expressions for Eel and _ into Eq. (23), using the non-
dimensional parameters defined by Eqs. (58)�(60) and setting Pext=$s=0
gives the following equation of state for the spherical system:

(1o+1&2z)
(1+`z)

=4s(1&2z)+{[1+7z&1�3+Fz2�3] ($s=0) (62)

Values of the phase fraction z which satisfy Eq. (62) guarantee the condi-
tions for thermodynamic equilibrium are satisfied for the two-phase system
when the phases are arrayed in the spherical geometry. Each solution
(value of z) will have a corresponding equilibrium phase composition given
by Eqs. (24) and (25). These solutions can be stable or unstable.

Case: $s=0, `=0, and Pext=0. If the curvatures of the free
energies are equal, `=0, and Eq. (62) simplifies to:

2(1&4s) z4�3+F{z+(4s&1o&1+{) z1�3+7{=0 ($s=`=0) (63)

The effect of the system size on the equilibrium phase fraction and
phase compositions is determined by the parameter {, which is inversely
proportional to the system radius. We can estimate the magnitude of the
capillarity effect by using the equation of state for a system with $s=0 and
`=0, Eq. (63), and perturbing about {=0. Let:

z=zo+zs{+O({2) (64)

Substituting Eq. (64) into Eq. (63) and collecting like terms yields:

zo=
(1o+1&4s)

2(1&4s)
($s=`=0) (65)

and

zs=
&[1+7z&1�3

o +Fz2�3
o ]

2(1&4s)
($s=`=0) (66)
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The equilibrium phase compositions are approximated by:

1:r &1&
4s1o

(1&4s)
&2zs{ ($s=`=0) (67)

and

1;r1&
4s 1o

(1&4s)
&2zs{ ($s=`=0) (68)

The equilibrium phase fraction and compositions are functions of the alloy
composition.

5. RESULTS AND DISCUSSION

When interfacial stresses and Curvatures are neglected, the equations
of state for the thin-film and spherical geometries are qualitatively very
similar: Both are cubic polynomials in the phase fraction that are functions
of the alloy composition (1o), difference in elastic constants ($s or $p), the
scaled stress parameter (4p or 4s), and the difference in the curvatures of
the free energy of each phase (`). When stresses vanish, 4=0, the equi-
librium phase fraction for both system geometries is given by the lever rule:
z=(1o+1)�2. In this case, the phase compositions are constant and inde-
pendent of the alloy composition (1o). When the scaled stress parameter is
nonzero, 4{0, the degree of the polynomial equation of state for both
geometries depends on the difference in the curvatures of the free energy
densities (`) and the elastic inhomogeneity ($). If `=$=0, the equation of
state in the absence of capillarity is linear in z;(2) while if $=0, the equa-
tion of state is quadratic in z.(6, 9)

Each root of the cubic polynomial equation of state found in the
absence of capillarity and interfacial effects corresponds to a state of the
system for which the equilibrium conditions are satisfied. The systems are
physical so long as the phase fraction satisfies 0�z�1. The bounds z=0
and z=1 correspond to systems comprised entirely of : or ;, respectively.
These bounds are treated as end-of-range extrema. The equilibrium states
can be either stable or unstable with respect to small changes in the phase
fraction. We showed previously that for a given temperature, alloy com-
position, and applied stress, more than one physically realizable equi-
librium state can exist.(6)

In the following, we explore the effect of capillarity and interfacial
stresses on these equilibrium states. In order to obtain estimates on the
shifts in equilibrium phase fraction, we employ the following approximations:
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\o f :
cc=5_1010 ergs�cm3; (C ;

o&C :
o)=0.1; and Y:=K:

r1012 ergs�cm3.
The magnitude of the interfacial and surface stresses are taken to be | f� I |<
103 dynes�cm and | f� s |<104 dynes�cm, respectively.(27) Misfit strains are
assumed to be on the order of 10&3&10&2 and we use 10&6<L<10&2 cm.
As noted by Cahn and Larche� , (2) the scaled stress parameter 4 can achieve
values greater than one in the vicinity of a congruent point, see also ref. 10.
These effects, which can give rise to such features as a William's point, are not
considered here.

5.1. Thin Films

The interfacial curvature vanishes for the thin-film system and the
interfacial stress manifests itself as a mechanical boundary condition along
the edge of the film. When the misfit strain also vanishes, the equilibrium
phase fraction of ; is given by solution to Eq. (29). The change in phase
fraction from the unstressed value, (1o+1)�2, owing to the interfacial stress
f� I is approximated by Eq. (32) and depends on the magnitude of the
parameter 4m . Using Eq. (30) and the materials parameters given above,
we estimate 4m<10&2. From the approximation Eq. (32), the shift in
phase fraction induced by the interfacial stress depends on the product
$p 4m . Thus, within the imposed bounds on the materials parameters, we
estimate the effect of interfacial stress on phase fraction to be small, on the
order of 10 or less, in the absence of a misfit strain.

The shift in equilibrium phase fraction for a misfit-free alloy owing to
the interfacial stress is shown schematically as a function of alloy composi-
tion 1o on the phase stability diagram of Fig. 3. Solid lines represent equi-
librium states that are stable with respect to small changes in z, while
dashed lines represent unstable solutions. Three values for the difference in
elastic constants, $p , are shown. When $p=0, there are no interfacial stress
effects and the equilibrium phase fraction and compositions are identical to
those of unstressed systems. This is to be expected as the elastic energy den-
sity induced by the interfacial stress is the same for both phases and, there-
fore, does not change the relative stability of one phase with respect to the
other. When $p>0, : is the elastically soft phase and the increase in the
elastic energy density is greater in the ; phase; thereby stabilizing : with
respect to ;. This results in a shift of the two-phase equilibrium curve to
greater alloy compositions. When $p<0, the opposite obtains and the
elastically soft ;-phase is stabilized with respect to :.

Using the materials parameters given above, 4p<0.4. From the
approximation of Eq. (39) for which the interfacial stress is ignored (non-
dimensional {o

11=0), it is seen that the misfit strain can induce significant
changes in the equilibrium phase fraction and phase compositions. Indeed,
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Fig. 3. Phase stability diagram for a misfit-free thin film showing the phase fraction z as a
function of reduced alloy composition 1o . For an elastically homogeneous system, $p=0, the
interfacial stress does not affect the equilibrium state and the equilibrium phase fractions and
compositions are identical to those of a stress-free system for all film thicknesses L. If $p<0,
the :-phase is harder than the ;-phase and the ; phase is stabilized by the interfacial stress.
If $p>0 the ;-phase is the harder phase, and : phase is stabilized.

under the appropriate conditions, the misfit strain can destabilize a two-
phase system.(2, 6)

The added effect of the interfacial stress on phase equilibrium can be
assessed using the approximation, Eq. (46), for the simple case $p=0 and
`=0. The magnitude of the additional shift in phase fraction owing to
interfacial stress is determined by the product 4p{o

11 . For the given set of
materials parameters, 4p{o

11<0.4. This indicates that the interfacial stress
can exert a significant influence on the system's equilibrium state via an
interaction with the misfit strain.

Figure 4 is a phase stability diagram showing the equilibrium phase
fraction of ; as a function of scaled alloy composition 1o . The dotted line
spanning &1�1o�1 gives the equilibrium phase fraction in the absence
of all stress effects (4p=0). The three solid lines correspond to stable phase
fractions for the case when 4p=0.25 with different values of {o

11 . When
f� I={o

11=0 (or the phases are thick), the span of the two-phase field is
reduced to alloy compositions &3�4<1o<3�4; the elastic energy of the
two-phase system arising from the misfit strain stabilizes a single-phase

1299Interfacial Stress and Phase Equilibria in Binary Alloys



File: 822J 236420 . By:XX . Date:09:06:99 . Time:13:12 LOP8M. V8.B. Page 01:01
Codes: 2314 Signs: 1757 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Phase stability diagram for a thin film showing the phase fraction z as a function of
reduced alloy composition 1o . The misfit strain (4p) alters the equilibrium phase fraction with
respect to the stress-free case (dotted line). Changes in the thickness of the film, L, yield
changes in {o

11 that result in further changes in the phase fraction.

system with respect to the two-phase system. The relative stability of the
two phases is further affected by the interfacial stress depending on the sign
of f� I �=. Figure 4 shows this change in stability for the two cases {o

11=1�4
and {o

11=&1�4. When f� I �=<0, {o
11>0, and ; is stabilized with respect to

:. This is shown as a shift to the left of the phase fraction in Fig. 4. The
phase fraction shifts to the right in Fig. 4 when f� I �=>0 or {o

11<0.
Consider the case when f� I>0 and the misfit strain =<0. The lattice

parameter of stress-free ; is less than that of stress-free : so that, in the
absence of an interfacial stress, the ;-phase is in tension and the : phase
is in compression. The positive interfacial stress acts to decrease the lattice
parameters of both phases. Since the :-phase is already in compression, the
additional compressive force-will increase the elastic energy density in the
:-phase while decreasing it in the ;-phase; thereby stabilizing the ;-phase
with respect to the :-phase. Should =>0 with f� I>0, the interfacial stress
will decrease the elastic energy density of : and increase that of ;, leading
to a stabilization of : with respect to ;.

The scaled equilibrium phase compositions, 1: and 1; are shown as
a function of scaled alloy composition 1o in Fig. 5. The solid lines depict
the phase compositions in the absence of all stress effects. For 1o<&1 and
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Fig. 5. Scaled compositions of the : phase (1:) and ;-phase (1;) are shown as a function
of the bulk alloy composition (1o) for the thin film geometry. The ;-phase composition is
given by the upper curve (1;>0) and the :-phase composition is given by the lower curve
(1:<0). The horizontal solid line gives the phase composition in the stress-free case.

1o>1, the system is single-phase : and single-phase ;, respectively. The
equilibrium phase compositions are independent of alloy composition in
the stress-free, two-phase state. The dashed line gives the phase composi-
tions for the case 4p=1�4 and {o

11=0. As seen from the phase stability
diagram, the two-phase field has been reduced in extent to &3�4<1o<3�4
and, unlike the stress-free situation, the phase compositions are a function
of alloy composition. The dotted lines show how the interfacial stress alters
the phase compositions for {o

11=1�4 and {o
11=&1�4 when 4p=1�4.

The change in phase composition induced by the interfacial stress
depends on the sign of {o

11 and, hence, on the sign of f� I �=. When {o
11<0

( f� I �=>0), the composition of : is increased, or shifted towards component
B, while the ;-phase becomes less rich in component B. This is a result of
the change in relative stability induced by the interfacial stress. When
f� I �=>0, : is stabilized with respect to ;. The system responds to this
change in stability by decreasing the phase fraction of ;. Mass is conserved
in the closed system and the composition of both phases must change.
Since ; is the solute-rich phase in this case and the phase fraction of ; is
decreasing, the compositions of each phase must increase. At equilibrium,
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the increase in free energy owing to the composition shift is compensated
by the decrease in free energy owing to the change in phase fraction. The
vertical line in Fig. 5 gives the difference in composition between the two-
phases for a given alloy composition. This difference in phase composition
remains constant across the two-phase field so long as both `=0 and
$p=0. When `{0, the change in free energy resulting from a change in
composition will be different for each phase.

It is useful to define a nondimensional stress as {ij=Tij �=Y: . For the
thin-film system, the only nonzero stress components are the in-plane
stresses T11=T22 . Substituting the equilibrium phase fraction for the case
$p=`=0, Eq. (46), into the expressions for the stress field in Appendix I
yields:

{:
11=

1
2

+
(1o+2{o

11)
2(1&4p)

(69)

and

{;
11=&

1
2

+
(1o+2{o

11)
2(1&4p)

(70)

The nondimensional force balance on the edge of the film, Eq. (74),
becomes:

{o
11=(1&z) {:

11+z{;
11 (71)

Figure 6 gives an example of a stress-composition ({11&1 ) phase
diagram calculated with 4p=1�2. Such a diagram is possible for the thin
plate geometry because the equilibrium stresses and compositions are
uniform throughout the phases. The solid lines denote field lines, or the
limits of the two-phase field. The :-phase line corresponds to z=0 and the
;-phase line to z=1. Between these two field lines, two-phase coexistence
(:+;) is possible.

Figure 6 is used much like an isothermal section of a compositional
ternary phase diagram.(9) For example, assume the scaled, bulk alloy com-
position is taken as 1o=0 and the nondimensional, in-plane applied stress
is {o

11=0. This latter condition corresponds, for example, to a system in
which no external stress is applied (Tap=0) and the film thickness L is very
large (the limit for which interfacial stress does not influence equilibrium.)
The point (1o=0, {o

11=0) is indicated on the phase diagram by the open
square. The dashed line passing through this point is the tie line, which
must be determined from the equilibrium conditions: Eqs. (69) and (70) for
the stresses and Eqs. (47 and (48) for the compositions. The intersection of
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Fig. 6. Diagram showing a region in scaled stress, {11 , and composition 1-space where a
two-phase field exists. The tie lines are dashed and end on the (solid) field lines. The equi-
librium phase compositions and in-plane stresses can be read from the ends of the tie lines
(filled characters).

the tie line with the : field line gives the equilibrium state of stress and
composition of the : phase ({:

11=0.5, 1:=&1). Likewise, the intersection
of the tie line with the ; field line gives the equilibrium state of stress and
composition of the ; phase ({;

11=&0.5, 1;=1). If the alloy composition
(1o) and effective applied stress ({o

11) are changed so that their position
when plotted on the stress-composition phase diagram remains on this tie
line, the equilibrium phase compositions and stresses remain the same,
although the volume fraction of the phases will change.

The open circle and triangle depict how the equilibrium phase com-
positions and stresses will change when the dimension of the planar film is
changed (thereby changing {o

11), assuming there is no applied stress
(Tap=0) and holding the bulk alloy composition at 1o=0. As seen from
Eq. (36), the sign of the effective stress {o

11 depends on the sign of f� I �= when
Tap=0. If f� I �=>0, then {o

11<0. If {o
11=&0.25 and 1o=0, the filled tri-

angles give the equilibrium scaled stresses and compositions of the two
phases: {:

11=0, 1:=&0.5 and {;
11=&1, 1;=1.5. The filled circles give the

equilibrium phase compositions and stresses for any effective stress ({o
11)
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and alloy composition (1o) which lies on the dotted tie line, for example
{o

11=0.25, 1o=0.
As the dimensions of the planar system decreases, the magnitude of {o

11

increases, the direction of which is determined by the sign of f� I �=. Depen-
ding upon the bulk alloy composition, it is possible for the interfacial stress
to stabilize a single-phase field in what would otherwise be a two-phase
field. The slopes of the field and tie lines are determined from the equi-
librium conditions and will depend on the magnitude of 4p .

5.2. Concentric Spheres

The sphere dimension affects the equilibrium phase fraction and com-
positions directly through the surface stress term and indirectly through the
interfacial stress and interfacial energies The magnitude of these effects to
first-order in { (the reciprocal of the outer sphere radius) can be estimated
using Eqs. (64)�(68). As defined by Eq. (59), { can be either positive or
negative depending on the sign of =f� s . For illustrative purposes, we assume
a positive misfit strain in ; and a tensile surface stress so that =f� s>0 and
{>0. As seen from Eqs. (64) and (66), the :-phase is stabilized with respect
to ; when {>0. For example, when both f� s and = are positive, the com-
pressive stresses engendered by the tensile surface stress makes the :-phase,
with its smaller lattice parameter, more stable than the ;-phase, and there
is a shift in the equilibrium phase fraction to a smaller value of z. Using the
approximate materials parameters given previously, using Eq. (66) we find
that particles with radii on the order of 50�100 nm could induce a shift in
the equilibrium phase fraction on the order of 0.1.

The nondimensional interfacial term 7 and F also appear in Eq. (66).
As both 7 and F can be either positive or negative they can act to stabilize
either of the phases. In most instances, we expect |F |<1, as usually | f� I |<
| f� s |. However, for coherent systems, it seems likely that |7|rO(1).

The interfacial stress and interfacial energy represent independent
means of creating new interfacial area, the former by moving atoms from
the bulk to the interface and the latter by stretching the interface. As a
result, the interfacial energy can be a function of the stress state of the bulk
phases at the interface through the presence of a nonzero interfacial stress.
In the planar geometry, this dependence has no effect on the equilibrium
conditions, due to the planarity of the interfaces. In contrast, in the concen-
tric sphere case, the dependence of the interfacial energy on the interfacial
stress affects the equilibrium state of the system. Moreover, this coupling to
the bulk stresses introduces a dependence of the interfacial energy on the
volume fraction of the phases. Thus, not only do the bulk phase composi-
tions depend on the volume fraction in elastically stressed solids, but the
the interfacial energy does as well.
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A major difference between the concentric sphere and thin-film
geometries is the uniformity of the stress fields in the two phases; the stress
field in the concentric sphere case is position-dependent within a phase,
whereas the stress field in the planar geometry is uniform throughout a
phase. This difference in the spatial dependence of the stress field could
result in qualitatively different behavior of the phase equilibria. For exam-
ple, in the thin-film case, a classical phase rule can be shown to exist, (9)

whereas in the concentric sphere case it is not clear if a phase rule
exists.(6, 7, 18) In addition, as was illustrated in Fig. 6, the in-plane stress
components in the planar geometry are thermodynamic densities and can
be controlled experimentally through the applied stress. This is not possible
in the spherical system with a spatially varying stress. The difference in the
behavior of these two systems illustrates the rich behavior that is possible
in elastically stressed systems.

6. SUMMARY

We have shown that interfacial and surface stresses can affect the equi-
librium phase fraction and composition in two-phase binary alloys, as
compared to large unstressed systems, when one or more of the system's
physical dimensions becomes small. The nature of this effect was explored for
two system-geometries that guarantee equilibrium, concentric spheres and
planar thin films. In both cases, the magnitude of the shift in the equi-
librium phase fraction and compositions from the unstressed values
depends on various thermodynamic and materials parameters, as well as
the system size and geometry. The equations of state for both systems have
been examined only in the limit of small changes in phase composition, and
a full nonlinear treatment of the problem remains to be performed.

In the thin-film or planar geometry, the interfacial stress acts in a
manner similiar to that of an applied stress in the plane of the film and
with a magnitude proportional to the reciprocal film thickness. The ther-
modynamic state of each phase remains spatially uniform and it is possible
to construct a stress-composition phase diagram that shows the effect of
film thickness on the equilibrium compositions and stresses within the
phases. The interfacial stress effect is strongest when there is a misfit
between the phases and the system is elastically inhomogeneous

For the case of two concentric spheres, the presence of an interfacial
stress leads to a dependence of both the elastic energy and the interfacial
energy on the phase fraction. In addition, the surface stress will affect the
relative stability of the phases and their equilibrium compositions, through
its interaction with the misfit strain and different elastic constants of the
phases; we estimate that shifts in phase fraction on the order of 0.1 might
be possible for spheres with radii as large as 50�100 nm.
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APPENDIX I

In this appendix, the elastic stresses and strains associated with the
thin-film geometry are calculated using the mechanical equilibrium condi-
tions. Owing to the stacking of the thin films (plates), bending in the
system is prohibited, and the elastic state within each phase is uniform.
Invoking the coherency condition at the :&; interface, Eq. (3), further
requires the strains in the plane of the interface to be equal. Since no stress
is applied in the x3 direction and the interface remains planar, the normal
stress in each phase must vanish according to the traction condition of
Eq. (4). This gives:

E :
11=E :

22=E ;
11=E ;

22 and T :
33=T ;

33=0 (72)

A mechanical force balance along the edge of the plates can be obtained by
considering one unit of the array:

l:wT :
11+l;wT ;

11+2wf� I=wLTap (73)

where Tap is the stress applied along the edge of the film, w is the width of
the film, and l: and l; are the thickness of the : and ; phase lyers, respec-
tively (Fig. 1). If L=l:+l; is the periodicity of the layers, z=l; �L is the
phase fraction of the ;-phase, and the force balance of Eq. (73) becomes:

(1&z) T :
11+zT ;

11=Tap&2f� I �L=T o
11 (74)

where T o
11 is the effective, in-plane stress for the system. The Voigt elastic

constants for a cubic crystal, C11 , C12 and C44 can be used to express the
stresses in terms of the strain components with Eq. (1). Substituting these
expressions into the force balance, Eq. (74), and solving for the strain E11

yields:

E11=E :
22=E ;

11=E ;
22=

Tap&2f� I �L+Y; =z
Y:+(Y;&Y:) z

(75)

with

E :
33=&2C :

12 E11 �C :
11 and E ;

33=&2C ;
12 E11 �C ;

11 (76)

where the planar elastic modulus Y is defined for each phase as:

Y=(C11&C12)(C11+2C12)�C11 (77)

The stresses in each phase are:

T :
11=T :

22=Y:E11 and T ;
11=T ;

22=Y;(E11&=) (78)
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The strain energy densities are:

1
2T :

ijE
:
ij=Y:E 2

11 (79)

and

1
2T ;

ij (E ;
ij&E T

ij )=Y;(E11&=)2 (80)

APPENDIX II

The elastic field associated with the concentric sphere model is
obtained using spherical coordinates and isotropic elasticity. Let ur be the
radial displacement component. Spherical symmetry then requires:(26)

u;
r =B1 r and u:

r =B2r+B3 �r2 (81)

where r is the radial position coordinate, and B1 , B2 and B3 are constants
to be determined from the boundary conditions. The elastic field deter-
mined by the displacements in Eq. (81) satisfy the mechanical equilibrium
conditions of Eq. (2). The non-zero strain components obtained from the
displacement fields are:

E;
rr=E ;

%%=E ;
,,=B1 (82)

E :
rr=B2&2B3 �r3 and E :

%%=E :
,,=B2+B3 �r3 (83)

The corresponding stresses are:

T ;
rr=T ;

%%=T ;
,,=3K ;(B1&=) (84)

and

T :
rr=3K:B2&4+:B3�r3 and T :

%%=T :
,,=3K:B2+2+:B3 �r3 (85)

where K and + are the bulk modulus and shear modulus, respectively, of
the indicated phase.

The three unknown coefficients are obtained from the coherency con-
straint at the :&; interface and the two mechanical force balances. The
coherency constraint, Eq. (3), gives u:

r (R;)=u;
r (R;) or:

B2R;+B3�(R;)2=B1R; (86)

The mechanical force balance at the :&; interface, Eq. (4), becomes:

T ;
rr=T :

rr&};f� I or 3K;(B1&=)=3B2K:&4+:B3�(R;)3&2f� I�R;

(87)
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The mechanical force balance at the outer surface requires:

T :
rr=3B2K :&4+:B3�(R:)3=&(Pext+2f� s �R:) (88)

Defining:

P=(Pext+2f� s �R:)�3K: (89)

and

e==&
2f� I

3K;R; (90)

and solving the above equations for the Bi yields the following expressions
for the stress and strain fields:

E ;
rr=E ;

%%=E ;
,,=A+3K:(A+P)�4+:z (91)

E :
rr=A&3K:(R:)3 (A+P)�2+:r3 (92)

E :
%%=E :

,,=A+3K:(R:)3 (A+P)�4+:r3 (93)

T ;
rr=T ;

%%=T ;
,,=3K;(E ;

rr&=) (94)

T :
rr=3K :A&3K:(R:)3 (A+P)�r3 (95)

T :
%%=T :

,,=3K:A+3K :(R:)3 (A+P)�2r3 (96)

where:

A=
12+:K;ez&3K :(3K;+4+:) P

3K:(3K;+4+:)+12+:(K;&K:) z
(97)

APPENDIX III

For a stress-free binary alloy, the diffusion potential, or the difference
in chemical potentials between species, is equal to the first derivative with
respect to composition (C ) of the Helmholtz free energy per atom, f :

MBA(C )=+B(C )&+A(C )=
�f
�C

= fc (98)

Expanding the diffusion potential about the respective, stress-free equi-
librium phase composition yields,

MBA(C )=MBA(Co)+ fcc(C&Co)+O((C&Co)2) (99)

for both phases. Since in the stress-free state, M :
BA(C :

o)=M ;
BA(C ;

o), using
Eq. (7) we obtain Eq. (14).
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